Spirometry

A quick guide

Sue Filsell
Clinical Respiratory Physiologist
South Link Health Conference
Dunedin Nov 08

What is it? What are we measuring?
- Equipment performance & validation
- Performing spirometry to ATS/ERS standards
- Choosing test results for reporting
- Reference values/interpretation

Why measure spirometry?
- Diagnosis? eg identification of airflow obstruction. Asthma/COPD
- Differentiate with other patterns of abnormality
- Assess severity/progression respiratory disease. TSANZ: Spirometry is the gold standard for diagnosing, assessing and monitoring COPD
- Assess objective therapeutic benefit
- Measure effect of smoking or occupational risk
- Assess long term risk. FEV1 is a clinically useful marker to identify patients at greatest risk of all cause mortality due to smoking (Eur Resp J 2007; 30: 616-22)

Well performed spirometry can indicate the cause of impaired ventilatory function

Obstructive: Air flow limitation in relation to max expired vol
- Asthma:
 - Increased airways resistance
- COPD:
 - Reduced elastic recoil & increased airways resistance

Restrictive: Reduced volume (Less common)
- Lungs have lost elasticity
- Respiratory muscles have lost strength
- Chest wall/pleura limits ability of lung to expand
 Requires other lung function tests for confirmation (TLC)

Spirometry variables

FVC (L BTPS)
- Forced Vital Capacity – the maximum volume of air that can be exhaled forcefully, following a maximum inspiration.

FEV1 (L BTPS)
- Forced Expiratory Volume (1 second) – the maximum volume of air that can be expired during the first second of an FVC manoeuvre
The FEV₁ expressed as a percentage (%) of the FVC:

\[\text{FEV₁/FVC} = \frac{\text{FEV₁}}{\text{FVC}} \times 100 \]

* Measurement of airflow obstruction

SVC (L BTPS)
- The maximum volume of air (litres) that can be exhaled slowly, following a maximum inspiration.
- Normal ventilatory function FVC = SVC

FEV₆ & associated indices
- The FEV₆ may be substituted for VC if the appropriate LLN for the FEV₆ & FEV₁/FEV₆ is used (from the NHANES III equations)

PEF (PEFR, PFR) L/sec
- Peak expiratory flow – the maximal flow generated during an FVC manoeuvre.
- Index of large airway obstruction

 (Gives information about the effort produced during the spirometry maneuver)

FEF 25-75% L/sec
- Forced mid-expiratory flow rate – the average flow of air measured over the middle 50% of an FVC manoeuvre.
- Index of flow limitation in smaller airways (<2 mm diam)
Flow Volume Loop

- The inspiratory loop pattern can be helpful in some conditions
- It is effort dependent

Clinically Useful Spirometry

- Critically dependent on
 - Spirometer accuracy & maintenance
 - Knowledge of correct technique
 - Good communication skills to help patient achieve consistent & maximal effort
 - Testing experience (troubleshooting)

ATS/ERS Task Force 2005

- Published Recommendations for Standardisation of Spirometry
 - Definitions
 - Equipment
 - Procedure

Spirometers: what sort?

- Volume Displacement
- Flow Spirometers

Eur Respir J 2005;26:319-338
Infection control

• Mouthpieces – recommend bacterial/viral filters
 – 99.9% filtration efficiency
 – Single use only
 – Low resistance to flow
 – Protects sensors
 – Minimize moisture
 • affects performance and accuracy

Equipment performance

Prepare Equipment

• Daily calibration with 3L syringe
 – Record ambient conditions
 • Temperature
 • Barometric pressure

 • Ensure equipment and cal syringe at the same room temperature 17 – 40 deg C
 • 3 L Cal syringe must have accuracy of +/- 15 ml (0.5%)
 • Leak free connection to spirometer

Correction Factor

- Correction factors are calculated from calibration and applied to all measurements
 - Correction factor = Measured / Expected value
 - Should be
 - 3.00 (syringe volume)
 - 3.00 (expected volume)
 - = 1.0
 - Acceptable range 0.97 – 1.03

All spirometers require regular validation

Weekly

- Volume check with 3L syringe in test mode
- Flow linearity; deliver 3L syringe at 3 flow rates

** Volumes must reach accuracy requirement of +/- 3.5%

Biological Controls

- Assessment of all aspects of the spirometer
- Use healthy non smoking individuals
- Derive mean, standard deviation and CV%
- Test weekly or more often if required
Example of biological control

<table>
<thead>
<tr>
<th>Date</th>
<th>FVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/10/06</td>
<td>3.97</td>
</tr>
<tr>
<td>14/10/06</td>
<td>4.07</td>
</tr>
<tr>
<td>21/10/06</td>
<td>4.11</td>
</tr>
<tr>
<td>28/10/06</td>
<td>4.07</td>
</tr>
<tr>
<td>04/11/06</td>
<td>3.92</td>
</tr>
<tr>
<td>09/12/06</td>
<td>4.25</td>
</tr>
</tbody>
</table>

Mean (x) 4.03
Standard deviation (SD) 0.12
Co-efficient of variation (CV) 2.86

Values must be within +/- 2 std deviations

Biological control data: FVC

Performing Spirometry

Prepare Patient
- Withhold
 - Bronchodilators
 - Short acting eg ventolin, combivent 4 hours
 - Long acting eg serevent 12 hours
 - Large meal, vigorous ex

Obtain Patient Details

<table>
<thead>
<tr>
<th>Name</th>
<th>ID</th>
<th>Date & time of Test</th>
<th>DOB</th>
<th>Height</th>
<th>Gender</th>
<th>Weight</th>
<th>Ethnicity</th>
</tr>
</thead>
</table>

Further Useful Information

- Reason for Performing Test
 - Any symptoms, occupational screening, pre op assessment

- Inhaled medications
 - Type and time of last use

- Smoking History
 - Current/Ex/Never
 - Calculate pack years

- Other Exposures / Medications
Spirometry is an **Effort Dependent Test**

- Explain and demonstrate the objectives of the test
- Clear instructions, encouragement and reinforcement are necessary to achieve acceptable results

FEV₁ and FVC

- Instruct patient to:

 "take a maximal breath in, then with your lips sealed around the mouthpiece, immediately blast the air out as fast & as far as you can. You must force it out for at least 6 secs but it may take longer than this to completely empty the lungs...."

 Continue to encourage patient "keep going, keep going"

 For inspiratory loop instruct
 "at the end of your maximal expiration inhale forcefully and maximally"

SVC

- Instruct patient to:

 "take in a maximal breath in, then with the mouthpiece sealed in your mouth exhale maximally without force as far as you possibly can"

Acceptability Criteria (ATS/ERS)

- Perform at least 3 tests (may need up to 8 tests)
- Must have an abrupt start
- Must be a continuous & forced expiration of at least 6 seconds and until
 - there is no change in volume for 1 second
 - or > 15 seconds
 - Or clinical indication to stop

 Ideal to have real time FVL & software feedback

Reproducibility Criteria (ATS/ERS)

- FEV₁ must be within 150mls (0.15)
- FVC must be within 150mls (0.15)
- PEF must be within 10%

Performance Related problems

Bronchodilator Reversibility

- Spirometry is measured before and after administration of bronchodilator.
- Used to determine whether airflow obstruction is reversible, i.e., if FEV₁/FVC < 70%.
- COPD:
 - Long-term control/deterioration based on post BD FEV₁.
 - Provides evidence of their best FEV₁ & permanent change in lung function (fixed obstruction).

Bronchodilators

- Short acting β agonist e.g. Ventolin
 - 400mcg MDI via spacer
 - Lower dose can be used
 - Repeat tests after 15 minutes
- Short acting anticholinergic e.g. Combivent
 - 400mcg Ventolin & 80mcg Atrovent
 - If aged >40 with smoking history
 - Repeat tests after 30 minutes
- Drug and Dose given must be included on final report

Selecting results

- The Highest FEV₁ and FVC
 - From acceptable & reproducible tests
 - Not necessarily from the same test

<table>
<thead>
<tr>
<th></th>
<th>FEV₁</th>
<th>FVC</th>
<th>FEV₁/FVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 1</td>
<td>2.75</td>
<td>3.50</td>
<td>79</td>
</tr>
<tr>
<td>Test 2</td>
<td>2.80</td>
<td>3.35</td>
<td>84</td>
</tr>
<tr>
<td>Test 3</td>
<td>2.90</td>
<td>3.40</td>
<td>85</td>
</tr>
</tbody>
</table>

FEV₁/FVC %

- Calculated from the best FEV₁ and the best FVC

\[
 FEV₁/FVC \% = \left(\frac{\text{best } FEV₁}{\text{best FVC}} \right) \times 100 \\
= \left(\frac{2.90}{3.50} \right) \times 100 \\
= 0.83 \times 100 \\
= 83\%
\]
Selecting Results

- **FEF** \(_{25-75}\) L/sec
 - From the test with the highest sum of \(\text{FEV}_1\) + FVC
 - Test 3

<table>
<thead>
<tr>
<th></th>
<th>FEV(_1)</th>
<th>FVC</th>
<th>FEV(_1) + FVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 1</td>
<td>2.75</td>
<td>3.50</td>
<td>6.25</td>
</tr>
<tr>
<td>Test 2</td>
<td>2.80</td>
<td>3.35</td>
<td>6.15</td>
</tr>
<tr>
<td>Test 3</td>
<td>2.90</td>
<td>3.40</td>
<td>6.30</td>
</tr>
</tbody>
</table>

PEF (L/min)

- The highest PEF measured from an acceptable test
- Reproducible within 10%

Final Spirometry Results

<table>
<thead>
<tr>
<th></th>
<th>Pred</th>
<th>Best</th>
<th>% Pred</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEV(_1) (L)</td>
<td>2.90</td>
<td>2.90</td>
<td>100</td>
</tr>
<tr>
<td>FVC (L)</td>
<td>3.55</td>
<td>3.40</td>
<td>96</td>
</tr>
<tr>
<td>FEV(_1)/FVC (%)</td>
<td>82</td>
<td>83</td>
<td></td>
</tr>
</tbody>
</table>

BTPS vs ATPS

- Gas volumes vary with temperature and pressure
- All spirometric volumes are reported BTPS
 - BTPS (patients)
 - Body temperature, ambient pressure, saturated with water vapour
 - ATPS (spirometers)
 - Ambient temperature & pressure, saturated with water vapour

Comments

- Make as many comments as necessary regarding test performance and results.
- If acceptable & reproducible result
 - The tests met ATS/ERS criteria for acceptability and reproducibility
- If not acceptable or reproducible
 - Why not?
 - Start of test or end of test criteria not met
 - Cough during expiration

Reference Values

- Dunedin NZMJ 91: 1-5 1980
 - \(n = 328\) aged 15-75
 - \(\text{FEV}_1\)
 - \(\text{FVC}\)
 - \(\text{FEF}_{25-75}\) (L/sec)
- Crapo
 - \(\text{FEF}_{25-75}\) (L/sec)
Determination of Normal Range

- % predicted

Abnormal if
- FEV₁ and FVC < 80% predicted
- FEF₂₅₋₇₅% < 60% predicted
- FEV₁/FVC < 70%

Final report

The results of this test meet all acceptability & reproducibility criteria.

Patterns in Spirometry

Classification of Ventilatory Abnormalities by Spirometry

<table>
<thead>
<tr>
<th>Obstructive</th>
<th>Restrictive</th>
<th>Mixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>↓</td>
<td>↓ or N</td>
<td>↓</td>
</tr>
<tr>
<td>↓</td>
<td>↑ or N</td>
<td>↓</td>
</tr>
</tbody>
</table>

Obstruction

Restriction eg pulmonary fibrosis
Fixed extrathoracic obstruction

Variable extrathoracic airway obstruction

Interpretation of Spirometry

Measured Parameters

- FEV₁/FVC (%)
- FEV₁ (L)
- FVC (L)
- FEF₂₅₋₇₅% (L/sec)

Interpreting results: limit to 3-4 variables + inspection of FVL

Interpretation

Was it done well?
-Spirometer calibrated/validated
-ATS/ERS criteria met for accuracy & reproducibility?
- Any technical comments on test performance?

Are you using appropriate normal values?
-Local ones may differ from those on your spirometer
-No recognised normal values for Maori

Has your patient used any drugs/inhalers?
-Your measurements may not be typical

Interpretation algorithm
Spirometric classification for COPD

<table>
<thead>
<tr>
<th>Severity</th>
<th>% Pred FEV₁</th>
<th>Post BD FEV₁/FVC</th>
<th>ATS/ERS & GOLD</th>
<th>TSANZ</th>
<th>NICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td><70</td>
<td>>80</td>
<td>>60=80</td>
<td>50-80</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td><70</td>
<td>50-80</td>
<td>40-59</td>
<td>30-49</td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td><70</td>
<td>30-50</td>
<td><39</td>
<td><30</td>
<td></td>
</tr>
<tr>
<td>Very severe</td>
<td><70</td>
<td><30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bronchodilator Response

? reversibility of airflow obstruction-complete or partial. Usually based on FEV₁

Significant reversibility
- ATS: if FEV₁ increases by 12% and 200mls
- TSANZ: 15% & 200ml increase

nb indicates reversibility, not necessarily asthma

Bronchodilator Reversibility

FVL showing reversible airflow obstruction

Spirometry: a measure of physiological change

FEV₁ is a measure of abnormal airway calibre. This is non-specific and can occur in asthma, COPD or bronchiectasis. It is a measure of physiological change but an indirect measurement of airway pathology.

Reduced FEV₁/FVC in asthma

Sensitivity = 35%
Specificity = 100%

Smith et al. AJRCCM, 2004

Patient examples
30 yr old female, non smoker. Intermittent wheeze.

<table>
<thead>
<tr>
<th></th>
<th>Pred</th>
<th>Meas</th>
<th>% pred</th>
<th></th>
<th>Meas</th>
<th>% Pred</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEV1</td>
<td>3.17</td>
<td>2.08</td>
<td>66</td>
<td>After salbutamol:</td>
<td>3.40</td>
<td>107</td>
<td>63%</td>
</tr>
<tr>
<td>FVC</td>
<td>3.99</td>
<td>3.85</td>
<td>96</td>
<td></td>
<td>3.85</td>
<td>108</td>
<td>12%</td>
</tr>
<tr>
<td>FEV1/FVC</td>
<td>79%</td>
<td>54%</td>
<td>43</td>
<td></td>
<td>79%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEF25-75</td>
<td>3.58</td>
<td>1.14</td>
<td>32</td>
<td></td>
<td>3.14</td>
<td>88</td>
<td></td>
</tr>
</tbody>
</table>

Is spirometry technically satisfactory
low FEV1/FVC ratio & low FEV1; mild airflow obstruction
Spirometry corrects to normal after bronchodilator
Example of asthma, complete reversibility

29 yr old male; 185 cm
Clinical: wheeze on exertion & at night time

Check the spirometry is technically accurate & reproducible
Evidence of airflow obstruction
Significant reversal but incomplete
No improvement in PEF not significant

41 yr old male Caucasian, chronic severe asthma
Severely reduced FEV1 & ratio with significant reversibility but not normalised
Nb FVC can also rise significantly so that FEV1/FVC can fall despite good BD
Other PFTs to exclude mixed defect (TLC)

31 yr old Samoan male
Ht 174 cm Wt 83 kg

Wheeze with allergen exposure
Regular medications: daily Ventolin use
Normal FEV1 but FEV1/FVC ratio lower than predicted (?LLN)
Significant reversibility in FEV1
Are the reference values appropriate for this patient?

41 yr old male Caucasian, chronic severe asthma
Severely reduced FEV1 & ratio with significant reversibility but not normalised
Nb FVC can also rise significantly so that FEV1/FVC can fall despite good BD
Other PFTs to exclude mixed defect (TLC)

COPD: obstructive irreversible
Post BD results give you fixed obstructive component.
Nb collapse pattern of FVL & exp time

COPD: obstructive irreversible
Post BD results give you fixed obstructive component.
Nb collapse pattern of FVL.
60 yr old male
Slow onset SOB over a few years
Ex smoker, 25 pack years
keeps pigeons

<table>
<thead>
<tr>
<th></th>
<th>Pred</th>
<th>Meas</th>
<th>% pred</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEV1</td>
<td>3.32</td>
<td>1.75</td>
<td>53</td>
</tr>
<tr>
<td>FVC</td>
<td>4.67</td>
<td>2.54</td>
<td>54</td>
</tr>
<tr>
<td>FEV1/FVC</td>
<td>71%</td>
<td>69%</td>
<td></td>
</tr>
<tr>
<td>FEF25-75</td>
<td>3.19</td>
<td>0.97</td>
<td>30</td>
</tr>
</tbody>
</table>

FEV1/FVC ratio is normal in relation to predicted values
The FEV1 & FVC are reduced
FEF25-75 is low suggestive of obstruction
The flow volume loop is tall & narrow - this suggests a restrictive disorder
Restriction needs to be confirmed with further lung function tests (TLC)

Trend Monitoring

- **Useful**
 - Disease progression
 - Response to medications
 - Occupational setting

Significant change over time?
- normal decline in FEV1: 30 mL/yr
- >150 ml (natural variability of the test)
- & >15% (Pellegrino et al Eur Resp J 2006)

Further reading

- Standardisation of Spirometry; ATS/ERS Task Force. Eur Resp J 2005;26: 319-338

Useful Websites